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1 Introduction

Stock illiquidity is a double-edged sword for investors. Indeed, it either impedes investors

from quickly acting on their information or results in transaction costs that lower their net

returns. In contrast, stock illiquidity is time-varying and predicts future returns (e.g. Chen

et al. (2018)), which implies the possibility of trading strategically to capture the liquidity

premium.1 Any attempt to trade on the liquidity premium inevitably entails a tradeoff—

earning a high liquidity premium is likely associated with high liquidity costs. Addressing

this tradeoff is important in successfully timing the liquidity premium.

Since the seminal work of Constantinides (1986), many studies have examined optimal

portfolio choice with stock illiquidity.2 Studies in this area find that even small transaction

costs can make investors’ optimal trading strategies deviate considerably from no-transaction

cost benchmarks such as those implied by Merton (1969) and Merton (1971). Such deviation

reflects a tradeoff between the gains from an improvement in portfolio composition and the

losses from trading costs. However, no study has simultaneously incorporated randomness

and the predictive power of stock illiquidity.

This study contributes to the literature by solving a dynamic trading model with stochas-

tic stock bid-ask spread (BAS hereafter) and the return predictability derived from it. In

the model, an investor trades in three assets: a liquid risk-free bond, a liquid stock, and

an illiquid stock. Trading in the liquid bond and liquid stock is costless, while trading in

the illiquid stock requires exceeding its BAS. The investor’s objective is to maximize their

expected utility from their net wealth in a finite horizon. Thus, our model serves as a natu-

ral extension of the one proposed in Dai et al. (2011) (DJL model hereafter).3 To the best

1Liquidity premium refers to the extra expected returns on illiquid stocks that compensate for the liquidity
costs incurred due to holding or trading in these stocks. Amihud and Mendelson (1986), Datar et al. (1998),
Amihud (2002), Pástor and Stambaugh (2003), and Chen et al. (2018) document the presence of liquidity
premium in common stocks. Brenner et al. (2001) and Christoffersen et al. (2018) document that stock
options have a considerable liquidity premium. Although Ben-Rephael et al. (2015) argue that stock market
liquidity has improved, illiquid stocks continue to have a considerable spread (e.g., Abdi and Ranaldo (2017)).

2See, for example, Davis and Norman (1990), Longstaff (2001), Liu and Loewenstein (2002), Liu (2004),
Lo et al. (2004), Lynch and Tan (2010), Gârleanu and Pedersen (2013), and Ang et al. (2014).

3To separate the effect of the randomness of the BAS and its predictive power, we also consider an
intermediate model in which illiquid stock has a stochastic BAS but constant expected returns. For ease of
reference, we call this model the stochastic bid-ask spread (SBAS)-DJL model. Comparing our model with
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of our knowledge, this is the first portfolio choice model that simultaneously incorporates

randomness and the predictive power of the BAS.

We use a portfolio consisting of S&P 500 stocks as a proxy for liquid stock and a portfolio

consisting of small cap stocks as a proxy for illiquid stock. The spreads of small cap stocks are

estimated at the stock level following Abdi and Ranaldo (2017).4 By estimating a predictive

regression following Piotroski and So (2012), we first confirm that the spreads indeed have

predictive power on the future returns of these small cap stocks.5 Next, we take the cross-

stock average of stock-level spreads to obtain the portfolio-level spread. Afterward, we use the

quasi-maximum likelihood estimation (QMLE) method to estimate the model parameters.

Our parameter estimates suggest a strong predictive power of the BAS on future returns, as

a 1% increase in portfolio-level BAS is associated with an approximately 7.7% increase in

the annualized expected return of the portfolio.

Next, we perform a numerical analysis to uncover the model’s implications. In our model,

the set of state variables that characterize the investor’s portfolio allocation includes the

current BAS and the share of their wealth invested in the illiquid stock, and the investor’s

optimal trading strategy is characterized by the sell and buy boundaries that jointly delimit

a no-trade region. When the state variables lie above (or below) the sell (or buy) boundary,

it is optimal to sell (or buy) the minimum amount of illiquid stock so that the after-trade

allocation lies exactly on the sell (or buy) boundary; when the state variables lie in the

no-trade region, it is optimal not to trade in the illiquid stock, as the trading costs would

exceed the benefits of a portfolio rebalancing.

Unlike other transaction cost models, our model features a strong interaction of return

predictability and trading costs, as they are both directly related to the BAS. This unique

feature leads to some interesting patterns in the optimal trading strategy, which we illustrate

as follows:

the SBAS-DJL model allows us to understand the effect of the predictive power of the BAS, and comparing
the SBAS-DJL model with the DJL model allows us to uncover the effect of the randomness of the BAS
alone.

4Abdi and Ranaldo (2017) show that the estimated spreads are small for large cap stocks.
5 We focus on the predictive power of effective spread constructed following Abdi and Ranaldo (2017).

Chen et al. (2021) show that the effective trading costs constructed following Hasbrouck (2009) also predict
future stock returns.
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• Capture Spot Liquidity Premium In our model, because the BAS positively pre-

dicts the future returns of the illiquid stock, the levels of both the buy and sell bound-

aries increase with an increase in the BAS. Meanwhile, the no-trade region widens as

the BAS increases because a higher BAS implies higher trading costs. Therefore, the

investor desires greater exposure to the illiquid stock as its BAS widens, but they also

perform less frequent portfolio rebalancing to save on trading costs. Through Monte

Carlo simulations, we show that the investor purchases a substantial amount of illiquid

stock at a large spread, which confirms that capturing the spot liquidity premium is

indeed an important component of the optimal trading strategy.

• Control Turnover Implementing such a premium-timing strategy is inherently costly

as capturing a high spot liquidity premium requires the investor to trade at a large

BAS. The investor must carefully control turnover to ensure that the trading costs

do not erode the profitability of such a strategy. This intuition is confirmed by the

fact that the optimal no-trade region in our model is much wider than that in the

DJL model, which does not allow the investor to time the liquidity premium. The

simulation results indicate that our model continues to imply a higher turnover of the

illiquid stock than the DJL model does. However, the extra trading costs are well

compensated for by the higher returns from timing the liquidity premium.

• Aim in Front of the Target Consistent with the empirical pattern, we assume that

the BAS of the illiquid stock follows a mean-reverting process. When the BAS is well

below the mean, it tends to increase in the near future. In this case, it is optimal

for the investor to buy some illiquid stock in advance because this stock’s expected

return is likely to increase in the near future as the BAS rebounds and buying shares

at a narrow spread implies lower trading costs. Similarly, when the BAS is well above

the mean, it tends to decrease in the near future. In this case, mean reversion should

weaken the investor’s incentive to purchase shares at a large BAS. Thus, our model

implies an aiming-in-front-of-target trading pattern.6 This intuition is formally verified

6The aim-in-front-of-the-target pattern is present in the models ofGârleanu and Pedersen (2013) and Dai
et al. (2022). Nonetheless, the mechanism of the two models is different from that in our model. In Gârleanu
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in a comparison of the optimal strategy and a myopic strategy that ignores the future

variations in the BAS.

Next, we show that adopting the optimal trading strategy in the context of timing the

liquidity premium is particularly important because of the strong interaction of return pre-

dictability and trading costs. To make this point, we first calculate the investor’s utility loss

incurred by adopting the myopic strategy instead of the optimal one.7 When adopting the

myopic strategy, although the investor still trades in response to changes in the liquidity pre-

mium, they overtrade and consequently incur high trading costs. Hence, the myopic strategy

causes a large economic utility loss—in the base case, with no portfolio constraints, it is as

large as 12.2% (2.44% annually) of the investor’s initial level of wealth; if we constrain the

investor from borrowing and short-selling, the loss remains at 3.3% (0.66% annually) of their

initial level of wealth. In comparison, if we eliminated the interaction of return predictabili-

ty and trading costs by waiving trading costs, this utility loss would become much smaller,

indicating that such interaction is the mechanism behind the results.8

The studies on portfolio choice with BAS often ignore the predictive power of the BAS on

future stock returns. In our model, if the investor erroneously assumes a constant expected

return on the illiquid stock, then their portfolio choice strategy would not respond to the

changes in the stock’s expected return. We show that the resultant utility loss can be

substantial, especially for long-term investors. For example, with an investment horizon of

10 years, an unconstrained investor would incur an equivalent wealth loss of 0.96% annually

by ignoring the return predictability derived from the illiquid stock’s BAS; if the investor

were subject to strict no-leverage and no-short-sale constraints, then the loss would be lower

at 0.45% annually because of the reduced investment in the illiquid stock.

Furthermore, we use historical market return data to retrospectively test the trading s-

and Pedersen (2013) and Dai et al. (2022), trading in the illiquid asset is subject to quadratic transaction
costs. Hence, it is optimal for the investor to trade slowly toward the target to save on transaction costs,
which requires the investor to aim in front of the target. In our model, trading costs are linear, and the
mean reverting attribute of the BAS drives the aiming-in-front-of-target pattern.

7The myopic strategy is constructed under the assumption that the investor responds to the spot BAS
in every moment and ignores the future variations in the BAS.

8To do this, we examine alternative portfolio choice models in which there is no transaction cost, no
return predictability, or a constant rate of transaction cost.
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trategies, and we find that the optimal trading strategy generates a much higher investment

return and Sharpe ratio than the myopic strategy and the no-liquidity-premium-timing s-

trategy do. For an unconstrained investor, adopting the optimal trading strategy generates

an average monthly return of 1.70% and a Sharpe ratio of 30.71%. In comparison, adopting

the myopic trading strategy (or no-liquidity-premium-timing strategy) generates an average

monthly return of 1.33% (or 1.07%) and a Sharpe ratio of 25.8% (or 29.71%). We find qual-

itatively similar results when the investor is restrained from borrowing and short selling. A

subsample analysis suggests that the performance advantage of optimal liquidity premium

timing is concentrated during adverse events, such as the 2008–09 global financial crisis.

As we stated earlier, stock illiquidity can have both positive and negative effects on

investors’ trading performance, and its net effect depends on which effect is dominant. We

show that a higher illiquidity risk, in the form of higher BAS volatility, can benefit the

investor under optimal liquidity premium timing. In contrast, if the investor fails to time

the liquidity premium, then the higher BAS volatility makes them slightly worse off. Hence,

we conclude that optimal liquidity premium timing is crucial for the investor to benefit from

greater variability in stock market liquidity.

We further study an optimal liquidity premium timing problem faced by a mutual fund

manager who exhibits aversion to poor performance against a liquid benchmark. This anal-

ysis is motivated by the following three observations. First, in the U.S., many equity mutual

fund managers use portfolios of liquid stocks, such as S&P 500 stocks, as their performance

benchmarks and the performance of the managed portfolios against the benchmarks is closely

related to managers’ reputation, status, and compensation (e.g., Ma et al. (2019)). Second,

holding illiquid assets to extract the liquidity premium appears to be a popular strategy in

the mutual fund industry (e.g., Huang et al. (2011)). Third, for fund managers with liquid

benchmarks, adopting a liquidity premium-timing strategy may drive the composition of the

managed portfolios away from the benchmark and can be quite risky. Therefore, we expect

the presence of relative performance concerns to affect managers’ optimal liquidity premium

timing strategies.

We show that because of managers’ aversion to poor performance, they allocate less

wealth to the illiquid stock and time the liquidity premium less aggressively. Nonetheless, the
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utility losses from adopting suboptimal trading strategies remain economically significant.

Moreover, we find that a moderate degree of relative performance concerns increases the

magnitude of utility gains from performing optimal liquidity premium timing. Last, we show

that when the fund manager times the optimal liquidity premium, the greater variability in

the BAS makes both the fund manager and fund investor better off.9

Other Related Studies In our model, we take the pricing effect of stock illiquidity (which

is empirically found to be strong) as exogenously given. Note that this empirical magnitude

is not entirely in line with the traditional portfolio theories. For example, Amihud (2002)

documents a liquidity premium-to-transaction cost (LPTC) ratio of 1.9 for the NYSE stocks,

while that of Constantinides (1986) is below 0.1. To explain the magnitude of the LPTC

ratio, studies have extended the model of Constantinides (1986) in various directions. The

literature suggests that a high LPTC ratio is generated by models with a time-varying

investment opportunity set (Jang et al. (2007), Lynch and Tan (2011), Dai et al. (2016)),

incomplete information on shifts in market regime (Chen et al. (2021)), or convexity in

investors’ preferences (Dai et al. (2021)).

Our study is also related to the studies on portfolio choice with return predictability. It

is empirically found that some economic variables, including dividend yield (e.g., Campbell

and Shiller (1988)), consumption-to-wealth ratio (e.g., Lettau and Ludvigson (2001)), real

interest rate (e.g., Campbell (1987)), and investor sentiment (e.g., Huang et al. (2015) and

Jiang et al. (2019)), can predict future stock returns.10 The theoretical studies on portfolio

choice with predictable returns include Balduzzi and Lynch (1999), Campbell and Viceira

(1999), Barberis (2000), Xia (2001), Huang and Liu (2007), Wachter and Warusawitharana

(2009), Lynch and Tan (2010), Gârleanu and Pedersen (2013), and Michaelides and Zhang

(2022). Recently, Moreira and Muir (2017) and Moreira and Muir (2019) demonstrate the

economic importance of volatility timing. These studies often assume that the predictive

9The fund investor delegates the management of their wealth to the fund manager and exhibits no
preoccupation with performance. When calculating the fund investor’s utility, we use the fund manager’s
optimal trading strategy as the input.

10It has been found that some derivative-based measures also exhibit predictive power on future stock
returns (e.g., Cremers and Weinbaum (2010), An et al. (2014), and Ge et al. (2016)). Accordingly, using
options-implied measures to improve the portfolio choice has been proposed (e.g. DeMiguel et al. (2014)).
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signal is not directly linked to the stock’s trading cost. However, in our model, the predictor

itself (i.e., the BAS) is strongly related to trading cost, which implies that the investor must

make a better trade-off between the profits and costs involved in active timing.

The remainder of this paper is organized as follows. In the next section, we present the

model setting and the motivation behind it. In Section 3, we perform a numerical analysis of

the model implications. In Section 4, we conclude the paper. Technical details are provided

in the Appendix.

2 The Model

In this section, we present the baseline theoretical framework adopted in this study.

2.1 Motivation

There are numerous studies on optimal portfolio choice with proportional transaction costs.

Most of them assume a constant rate of transaction costs or the costs incurred in a trade to

be a constant fraction of the dollar trading volume. Here, we perform an intuitive analysis

to demonstrate that in reality, the effective BAS of illiquid stocks is time-varying and has

predictive power on future stock returns. To the best of our knowledge, no optimal portfolio

choice model has simultaneously incorporated these two stylized facts of the BAS.

Chen et al. (2018) document the predictive power of aggregate market illiquidity on

aggregate market returns. To ensure consistency with our theoretical framework, our analysis

in this subsection exclusively focuses on the predictive power of the BAS of illiquid stocks.

2.1.1 Sample of Illiquid Stocks and Calculation of the BAS

Our data are obtained from the Center for Research in Security Prices. We use data on

stocks with small market capitalization (i.e., small cap stocks) because they are generally

less liquid than large cap stocks. We choose a sample period from January 2002 to December

2021, as this allows us to avoid the mechanical effect of decimalization, which occurred in

2001, on stock spreads.

7



We select sample stocks according to the following two criteria. The stocks should be

in the lowest decile of market capitalization as of January 2002 and have complete price

information—daily low/high and closing prices—over the sample period.11 Applying this

filter leaves us with 388 common stocks. For each of these stocks and for each month t, we

use daily price information to estimate its effective BAS using the method proposed by Abdi

and Ranaldo (2017).12

2.1.2 Predictive Power of the BAS on Stock Returns

Following Piotroski and So (2012), we verify that the BAS exhibits predictive power on the

future returns in our sample of small cap stocks. First, we estimate the following predictive

regression:

Ri,t = β0,t + β1,tθi,t−1 + εi,t (2)

for each month t, where Ri,t is stock i’s return in month t (calculated using its bid price)

and θi,t−1 is the estimated BAS of stock i for month t − 1. Next, we take the time-series

average of the parameter estimates. As shown in Table 1, the average of estimates β̂0,t is

β̂0 = 0.0096 with a Newey–West adjusted t-statistic of 2.63 and the average of estimates β̂1,t

is β̂1 = 0.3702 with a Newey–West adjusted t-statistic of 2.42. These results demonstrate

the predictive power of the BAS in our sample.

Figure 1 shows the average BAS of the sample stocks with monthly frequency to demon-

strate the time-variability of the spreads. We find that the average BAS indeed exhibits

11Price information is necessary to estimate the effective spreads of these stocks. Although the market
capitalization of the sample illiquid stocks varies over time, they are a representative sample of illiquid stocks
over our sample period. For example, in December 2021, 53.1% of the sample stocks were in the lowest decile
of market capitalization and 86.1% were below the median market capitalization.

12The formula used for calculating the effective spread in month t is as follows:

θt =

√√√√max

{
0,

4

N

N∑
i=1

(ci − ηi)(ci − ηi+1)

}
, (1)

where N is the number of trading days in month t, ηi is the average of the high and low prices on day i,
and ci is the closing price on day i. There are alternative methods for estimating the stock-level BAS in the
literature (e.g., Roll (1984) and Corwin and Schultz (2012)). As a robustness check, we also use the methods
in Roll (1984) and find similar results. These findings are consistent with the argument of Abdi and Ranaldo
(2017) that their BAS estimate is highly correlated with existing ones .
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Table 1: Coefficient Estimates

This table summarizes the coefficient estimates of the predictive regression Ri,t = β0,t +β1,tθi,t−1 +
εi,t, where Ri,t is stock i’s return in month t (calculated using its bid price) and θi,t−1 is the

estimated BAS of stock i for month t− 1. β̂0 (or β̂1) is the time-series average of estimate β̂0,t (or

β̂1,t).

Coefficient Estimate Newey–West Adjusted t-Statistic

β̂0 0.0096 2.63

β̂1 0.3702 2.42

2002 2006 2010 2014 2018 2022

Calendar Time

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

B
A

S

Figure 1: Time Series of Bid-Ask Spread

This figure shows the monthly estimates of the BAS for the portfolio of small cap stocks used
in this study. The stock-level BAS is constructed following Abdi and Ranaldo (2017) and the
portfolio-level BAS is the equal-weighted average of the stock-level BAS. The red dashed line is the
time-series mean of the BAS.

significant variations over time, with a mean value of 1.7%.

2.2 Model Setting

Next, we present the baseline model, which is based on the above analysis.

2.2.1 Assets

The investment opportunity set in our model includes three assets. The first is a risk-free

bond that offers interest at a constant rate r. The second is liquid stock whose price process
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SLt follows a geometric Brownian motion as follows:

dSLt
SLt

= µLdt+ σLdZ1t. (3)

Trading in the bond and liquid stock is costless. The third asset is illiquid stock, wherein

trading requires the investor to exceed its BAS. Based on the empirical evidence, we assume

that the bid price process SIt of the illiquid stock is governed by the following stochastic

differential equation.
dSIt
SIt

= (µI + λθt)dt+ σIdZ2t, (4)

where θt ≥ 0 is the time-t BAS and λ ≥ 0 is the LPTC ratio (e.g., Constantinides (1986)).

Thus, the stock’s ask price at which the investor can purchase shares is (1+θt)St. We assume

that θt follows a square root process to ensure the non-negativity of the BAS.

dθt = κ(η − θt)dt+ ν
√
θtdZ3t, (5)

where η > 0 is the long-term mean value, κ > 0 is the mean reversion speed, and ν is the

volatility of the BAS.13

In equations (3), (4), and (5), Z1t, Z2t and Z3t are three standard Brownian motion

processes, defined on a filtered complete probability space (Ω,Ft, P ), with the following

correlation coefficient matrix.

Λ =


1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1

 . (6)

Usually, in portfolio choice problems, the liquid (or illiquid) stock in the model is inter-

preted as a diversified portfolio consisting of liquid (or illiquid) stocks. Our interpretation is

consistent with this calibration strategy (see Section 3.1).

13Note that the process θt governed by the stochastic differential equation (5) is unbounded from above.
If we assume that the illiquid stock’s middle price follows the process (4) instead of its bid price, then it is
possible to obtain a negative bid price when the spread θt is sufficiently large, which is unreasonable. Hence,
we model the illiquid stock’s bid price using (4). One alternative modeling approach is to set a reflecting
boundary at zero bid price and model the middle price. The implications of such a model will be similar to
those derived from our model.
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2.2.2 Budget Constraints and Objective Function

When there are transaction costs on the illiquid stock, we need to track the investor’s liquid

and illiquid holdings separately. Let xt be the dollar value invested in the liquid assets with

a dollar amount of ωt invested in the liquid stock, yt be the dollar value invested in the

illiquid stock (measured by its bid price), and Dt and It be two non-decreasing adaptive

processes denoting the cumulative selling and purchasing dollar values of the illiquid stock

(also measured by its bid price). Then, the investor’s dynamic budget constraints are as

follows:

dxt = (rxt + ωt(µL − r))dt+ ωtσLdZ1t + dDt − (1 + θt)dIt, (7)

dyt = (µI + λθt)ytdt+ σIytdZ2t − dDt + dIt. (8)

The investor’s objective is to maximize their expected utility from the level of net wealth

at a finite horizon T by choosing the optimal trading strategy for both the liquid and illiquid

stock:

max
{(Dt,It,ωt):t≥0}

E

[
1

1− γ
W 1−γ
T

]
(9)

subject to (5), (7), and (8), where Wt = xt + y+
t − (1 + θt)y

−
t is the net wealth process and

γ > 0 is the constant relative risk aversion coefficient of the investor. For any admissible

trading strategy, we require the resultant wealth process to satisfy Wt ≥ 0 for all t.

Portfolio Constraints In practice, investors’ portfolio choices are subject to certain con-

straints. For ease of exposition, we focus on two cases—the case without any position limits

(the Unconstrained Case” hereafter) and the case with strict no-leverage and no-short-sale

constraints on both stocks (the Constrained Case” hereafter). In the Constrained Case, we

require the investor’s subwealth processes to satisfy 0 ≤ yt ≤ Wt and 0 ≤ ωt ≤ xt for all

t ≥ 0.14

14Note that incorporating other types of portfolio constraints in our model is straightforward. Our analysis
also suggests that the results are likely to hold in other intermediate cases.
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2.2.3 HamiltonJacobi–Bellman Equation

The investor’s optimization problem is solved using the dynamic programming method.

Thus, we define the investor’s value function as follows:

J(x, y, θ, t) = max
{(Ds,Is,ωs):s≥t}

E

[
1

1− γ
W 1−γ
T |(xt, yt, θt) = (x, y, θ)

]
. (10)

Shreve and Soner (1994) suggests that the function J(x, y, θ, t) is the viscosity solution to

the following HamiltonJacobi–Bellman (HJB) equation.

max
{

sup
ω
Lω0J + Jt, S0J, B0J} = 0, (11)

J(x, y, θ, T ) =
1

1− γ
(x+ y+ − (1 + θ)y−)1−γ, (12)

on an appropriate solution domain,15, where the differential operators in (11) are given by

Lω0J = (rx+ ω(µL − r))Jx + (µI + λθ)yJy + κ(η − θ)Jθ +
1

2
ω2σ2

LJxx +
1

2
σ2
Iy

2Jyy

+
1

2
ν2θJθθ + ρ12ωσLσIyJxy + ρ13ωσLν

√
θJxθ + ρ23σIyν

√
θJyθ, (13)

S0J = Jx − Jy, (14)

B0J = Jy − (1 + θ)Jx. (15)

Dimension Reduction The homogeneity property of the value function (with respect to

the variables x and y) allows us to use the following transformation to simplify the problem.

J(x, y, θ, t) =
1

1− γ
(x+ y)1−γe(1−γ)φ(π,θ,t), (16)

where the scaled state variable π = y
x+y

is the investor’s allocation to the illiquid stock and the

function φ(π, θ, t) can be interpreted as the certainty equivalent rate of return (CER) required

15For example, in the Unconstrained Case, the solution domain is R0 = {(x, y, θ, t) : θ ≥ 0, x+ y− θy− ≥
0, t ∈ [0, T ]}, and in the Constrained Case, the solution domain is R1 = {(x, y, θ, t) : θ ≥ 0, x ≥ 0, y ≥
0, t ∈ [0, T ]}.
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by the investor over the period [t, T ].16 Let ξ = ω/(x+ y) be the investor’s allocation to the

liquid stock. Then, it can be shown that φ(π, θ, t) satisfies the following partial differential

equation.

max
{

sup
ξ
Lξ1φ+ φt, −φπ, −θ + (1 + θπ)φπ} = 0, (17)

φ(π, θ, T ) = ln(1− θπ−), (18)

where the expression of operator Lξ1φ is presented in the Appendix A to save space.

Optimal Trading Regions. Given the solution φ(π, θ, t) to equation (17)–(18), we can

define the following regions: an optimal buy region (BR),

≡ {(π, θ, t) : −θ + (1 + θπ)φπ = 0}; (19)

an optimal sell region (SR),

≡ {(π, θ, t) : −φπ = 0}; (20)

and an optimal no-trade region (NTR)

≡ {(π, θ, t) : 0 < φπ <
θ

1 + θπ
}. (21)

In general, it is optimal to trade in the illiquid stock only when the wealth allocation to

this stock lies in the BR or SR. The boundary between the NTR and the SR (or BR) is the

optimal sell (or buy) boundary. In Section 3.2, we discuss these optimal trading boundaries

in detail.

2.3 Models for Comparison Purpose

If we eliminate the randomness and predictive power of the BAS, then our model reduces

to the DJL model studied in Dai et al. (2011). We consider another model that assumes

16Equation (16) implies that the investor is indifferent between choosing their optimal trading strategy or
receiving a constant return of φ(π, θ, t) over the period [t, T ].
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Table 2: Nested Cases for Comparison

This table summarizes the nested models with the respective parameter restrictions for comparison.

Nested Model Parameter Restrictions Features

DJL Set λ = κ = ν = 0 Constant BAS
SBAS DJL Set λ = 0 Random BAS but constant premium

Ours No restriction Random BAS and random premium

a stochastic BAS but constant expected returns on the illiquid stock to separate the effect

of randomness and the predictive power of BAS. We call this model the DJL model with

stochastic BAS (SBAS-DJL model).17 Comparing our model with the SBAS-DJL model

allows us to understand the effect of the predictive power of the BAS, and comparing the

SBAS-DJL model with the DJL model allows us to uncover the effect of the randomness of

the BAS.

We adjust the illiquid stock’s (constant) expected return parameter (i.e., µI) in the DJL

and SBAS-DJL models to its long-term mean value implied by our model (i.e., µI + λη) to

make fair comparisons. We summarize this information in Table 2.

3 Numerical Analysis of Model Implications

Next, we conduct a quantitative analysis of the model’s implications. As the models consid-

ered in this study do not permit closed-form solutions, we solve them numerically using the

method outlined in the Appendix A.

Our numerical analysis has the following goals: (i) to understand the main features of

the investor’s optimal trading strategy; (ii) to demonstrate the importance of adopting the

optimal strategy; and (iii) to examine the implications of the liquidity risk, with the provision

of timing the liquidity premium, for the investor’s welfare.

17The DJL model is obtained by setting the LPTC ratio λ, the mean reversion speed κ, and the BAS
volatility ν to 0, and the SBAS-DJL model is obtained by setting λ to 0.
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3.1 Model Calibration

We begin with a description of the model calibration. We create an equally weighted portfolio

consisting of our sample illiquid stocks as a proxy for the illiquid stock in our model, and

we calculate its effective BAS and monthly returns using the portfolio value on the bid side.

We use an equally-weighted portfolio consisting of S&P 500 stocks as a proxy for the liquid

stock in our model and calculate its monthly returns.18

Next, we use the QMLE method to obtain stock-related parameters.19 The liquid stock

has an annual expected return of µL = 12.2% and a return volatility of σL = 17.4%. The

illiquid stock has an annual unconditional expected return of µI = 5.7% and a return volatil-

ity of σI = 18.1%. The correlation coefficient between the liquid stock’s return and illiquid

stock’s return is ρ12 = 0.889. The illiquid stock’s BAS has a mean value of η = 1.7%, a

mean reversion speed of κ = 1.309, and a volatility of ν = 7.4%. Notably, the loading of the

expected return of the illiquid stocks on its BAS is as high as λ = 7.75 with high statistical

significance, which suggests a fairly strong predictive power of the BAS. The correlation

coefficient of the liquid stock’s return and illiquid stock’s BAS is ρ13 = −0.514, and that of

the illiquid stock’s return and its BAS is ρ23 = −0.554.

We estimate the risk-free rate by taking the time-series average of the Fama–French risk-

free rate factor over the sample period and obtain r = 1.2%. We set the coefficient of the

investor’s risk aversion to γ = 10.20 The investor’s investment horizon is set to T = 5 years.

Table 3 summarizes the default parameter values. Note that the parameter values in the

DJL and SBAS-DJL models are adjusted using the formulas provided in Table 2.21

We set the initial value of BAS θ0 to the long-term mean η and the investor’s initial

18We also examine value-weighted portfolios. In this case, the unconditional expected return of the illiquid
portfolio is lower and the LPTC ratio is higher, indicating that the results for the value-weighted portfolios
are stronger than what we report below.

19To save space, we present the detailed QMLE procedure in the Appendix B.
20We set a relatively high risk aversion coefficient to avoid an unrealistically high level of leverage used by

the investor. Assuming a smaller risk aversion coefficient will make the quantitative results even stronger.
21In the DJL model or SBAS-DJL model, the expected return of the illiquid stock is set to µI = 0.057 +

7.75× 0.017 = 0.189, and the loading on the BAS is set to λ = 0. We also examine the results obtained by
perturbing the model parameters within reasonable ranges (e.g., within ± two standard errors), and we find
that the results are qualitatively similar to what we report below. These robustness test results are available
from the authors upon request.
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Table 3: Default Parameter Values

This table summarizes our default parameter values. For stock-related parameters, we report both
their estimated values and standard errors (S.E.).

Parameter Symbol Estimate S.E.

Stock-related Parameters
Expected return of the liquid stock µL 0.122 0.084
Volatility of liquid stock returns σL 0.174 0.022
Unconditional expected return of the illiquid stock µI 0.057 0.107
LPTC ratio of the illiquid stock λ 7.750 1.100
Volatility of illiquid stock returns σI 0.181 0.023
Correlation between liquid and illiquid returns ρ12 0.889 0.014
Correlation between liquid returns and illiquid stock BAS ρ13 -0.514 0.060
Correlation between illiquid returns and illiquid stock BAS ρ23 -0.554 0.080
Mean value of illiquid stock BAS η 0.017 0.003
Mean reversion speed of illiquid stock BAS κ 1.309 0.359
Volatility of illiquid stock BAS ν 0.074 0.005

Other Parameters
Risk-free rate r 0.012 -
Investment horizon (years) T 5 -
Relative risk aversion coefficient γ 10 -

position on the illiquid stock y0− to 0 unless otherwise stated.

3.2 Features of the Optimal Trading Strategy

Next, we discuss the quantitative features of the investor’s optimal trading strategy.

3.2.1 Optimal Trading of the Illiquid Stock

Figure 2 plots the optimal trading boundaries at time t = 0 and t = 4.5 in the DJL model,

SBAS-DJL model, and our model, respectively. Subfigures (a) and (b) show the results for

the Unconstrained Case, and subfigures (c) and (d) show the results for the Constrained

Case.

We analyze subfigure (a) to demonstrate our main points. The optimal sell and buy

boundaries are denoted by two blue lines (one solid and the other dashed) in our model, two
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Figure 2: Optimal Trading Boundaries in Different Models

This figure shows the optimal trading boundaries in our model, the SBAS-DJL model, and the
DJL model. Panel (a) shows the boundaries at initial time t = 0 and Panel (b) shows them at time
t = 4.5 years for the case without any portfolio constraints; Panels (c) and (d) show the respective
results for the cases with no-leverage and no-short-sale constraints on both stocks. The parameter
values used to generate these results are reported in Table 3.
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red lines in the SBAS-DJL model, and black and gray dots in the DJL model.22 Given these

boundaries, the investor’s optimal trading strategy for the illiquid stock can be characterized

as follows. When the investor’s wealth allocation to the illiquid stock lies above the sell

boundary (or below the buy boundary), it is optimal to trade in the minimum amount of

illiquid stock to push its weight in the portfolio back to the sell (or buy) boundary, as signified

by the arrow from point A to point B (or from point C to point D). The no-trade region lies

between the sell boundary and the buy boundary. When the investor’s wealth allocation to

the illiquid stock lies in the no-trade region, it is better to not trade in the illiquid stock, as

the benefits from rebalancing to a better risk exposure are outweighed by the trading costs

incurred.

The optimal trading boundaries in our model exhibit some interesting features compared

with those in the DJL and SBAS-DJL models, which we elaborate in detail below.

Capture Spot Liquidity Premium The level of both the sell and buy boundaries in

our model increases with an increase in the BAS because a larger BAS implies a higher

liquidity premium, which increases the investor’s desired exposure to the illiquid stock. This

upward shift in the optimal trading boundaries reveals the investor’s incentive to earn the

spot liquidity premium. However, as a larger BAS also implies greater trading costs, the

no-trade region also widens as the BAS increases in the Unconstrained Case.23 Hence, it is

optimal for the investor to maintain high exposure to the illiquid stock but to reduce the

frequency of rebalancing at a wide spread to earn the spot liquidity premium.24

We perform Monte Carlo simulations for the optimal trading strategies in the three

models to better understand the dynamic properties of the optimal trading strategy. We are

22Recall that the BAS is constant in the DJL model. Accordingly, when generating the results in the DJL
model, we fix the BAS to its mean value η.

23This pattern does not necessarily hold in the Constrained Case because the bindingness of the no-leverage
constraint works against the choice of a wide no-trade region.

24 The no-trade region in our model is located higher than those in the SBAS-DJL model or DJL model
depending on whether the BAS is equal to its mean value η. This indicates that on average, the investor in
our model desires a greater exposure to the illiquid stock. This pattern is due to the hedging demand induced
by the negative correlation between shocks on the realized returns on the illiquid stock and its BAS (hence
its liquidity premium). This is consistent with the results derived from other models where the expected
return is predicted by alternative variables, such as dividend yield or consumption–wealth ratio (e.g., Lynch
(2001) and Huang and Liu (2007)).
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Table 4: Trading Statistics

This table reports the trading statistics obtained from performing 10,000 paths of Monte Carlo
simulations of the optimal trading strategies implied by the three models. Panel A shows the results
for the case without any portfolio constraints, and Panel B shows the results for the case with no-
leverage and no-short-sale constraints on both stocks. Note that the initial trade is conducted at
the average BAS η. The parameter values used in generating these results are reported in Table 3.

Panel A: Unconstrained Case
Our Model SBAS-DJL Model DJL Model

Volume of Purchase below Average BAS 0.103 0.031 N.A.
Volume of Purchase above Average BAS 1.140 0.016 N.A.
Present Value of Transaction Costs 0.043 0.017 0.017

Panel B: Constrained Case
Our Model SBAS-DJL Model DJL Model

Volume of Purchase below Average BAS 0.034 0.006 N.A.
Volume of Purchase above Average BAS 0.240 0.007 N.A.
Present Value of Transaction Costs 0.015 0.009 0.008

particularly interested in the volume of purchases occurring above or below the mean value

of the BAS, as there is active trading for the liquidity premium when there is a large BAS.

These measures help us understand the importance of timing the liquidity premium in the

optimal trading strategy.

We report the trading statistics obtained from 10,000 simulated paths in Table 4. Panel

A shows the results for the Unconstrained Case and Panel B shows the results for the

Constrained Case. In the Unconstrained Case of our model, the volume of stock purchases

above the mean BAS is much larger than those below the mean BAS (1.14 vs. 0.10),

suggesting that the active timing of the liquidity premium is indeed a major component of

the optimal trading strategy. In contrast, in the SBAS-DJL model, the volume of purchases

below the mean BAS is much larger than those above the mean BAS because the investor

only performs liquidity-timing (i.e., trades more when the spread is narrow) in the SBAS-

DJL model. The results are qualitatively similar in the Constrained Case. Thus, we conclude

that earning the liquidity premium is indeed an important component of the optimal trading

strategy.
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Control Turnover The negative correlation between the realized returns and the BAS of

the illiquid stock implies that after the negative shocks on the realized returns, it is likely

that the investor’s exposure to the illiquid stock will decrease and the liquidity premium will

increase, which increases the investor’s optimal exposure to this stock. Thus, the investor

has a strong incentive to purchase shares at a wide spread, but the investor should exhibit

an extra incentive to reduce turnover to avoid excessive trading on wealth because it is

inherently costly. A close examination of Figure 2 reveals that the optimal no-trade region

in our model is much wider than those in the other two models, which confirms the above

intuition.25

To further verify this mechanism, we note that increasing the volatility of the BAS

(i.e., ν) increases the variability in the BAS and liquidity premium, which would strengthen

the investor’s incentive to capture the change in the liquidity premium and increase their

potential trading costs. In such a case, the investor should choose a wider no-trade region to

control turnover. Figure 3(a) plots the optimal no-trade region for three values of ν, which

confirms that it is indeed the case.

Aiming-in-front-of-the-target Pattern Consistent with the empirical pattern, the BAS

in our model is assumed to be mean-reverting. Intuitively, when the BAS is well below the

mean value, it tends to increase in the near future. In this case, it is optimal for the investor

to buy some stock in advance because the future expected returns are likely to increase

as the BAS reverts and buying shares at the currently small BAS incurs lower trading

costs. Similarly, when the BAS is well above the mean value, it tends to decrease in the

near future. In this case, although the spot liquidity premium is high, reversion of the

BAS reduces the future liquidity premium and the profitability of purchasing shares at the

currently large BAS. Thus, the speculation on the future changes in the BAS should make

the investor purchase fewer shares at a large spread. This intuition suggests that the optimal

25In the presence of transaction costs, active investors will choose a wider no-trade region to save on
transaction costs in general. We also examine a case wherein the degree of return predictability is the same
as in our model but with a constant BAS. In this case, the optimal no-trade region is narrower than that in
our model. This implies that the interaction of return predictability and trading costs in our model induces
the investor to further reduce turnover.
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Figure 3: BAS Volatility and Optimal Trading Boundaries

This figure shows the optimal trading boundaries in our model at the initial time t = 0 for three
values of BAS volatility (i.e., ν). Panel (a) shows the results for the case without any portfolio con-
straints and Panel (b) shows the results for the case with no-leverage and no-short-sale constraints
on both stocks. Other parameter values used to generate these results are reported in Table 3.

trading strategy in our model should exhibit an aiming-in-front-of-the-target pattern when

the current BAS is either too low or too high.

We compare the optimal trading strategy with the myopic trading strategy to verify this

intuition. The myopic strategy is obtained by solving the DJL model independently for

each level of the BAS. When adopting the myopic strategy, the investor takes into account

the current BAS and liquidity premium but not the future changes in BAS and the liquidity

premium. Figure 4 shows the optimal trading boundaries (blue lines) and the myopic trading

boundaries (red lines). When the BAS is sufficiently below the mean value, the optimal buy

boundary (blue dashed line) is located above the myopic buy boundary (red dashed line),

implying that the investor should buy more shares at a small BAS when adopting the optimal

strategy. In comparison, when the BAS is above the mean value, the optimal buy boundary

is located beneath the myopic buy boundary, implying that the investor is reluctant to

purchase additional shares at a large BAS when following the optimal strategy.

The aiming-in-front-of-the-target pattern in our model is driven by the mean reversion

property of the BAS. If we increase the mean reversion speed, then the investor should

have more of an incentive to buy shares when the BAS is narrow and less of an incentive

21



0 0.005 0.01 0.015 0.02 0.025 0.03

BAS

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5
A

llo
ca

tio
n 

to
 Il

liq
ui

d 
S

to
ck

Sell: Optimal
Buy: Optimal
Sell: Myopic
Buy: Myopic

Mean Value of BAS

(a) Unconstrained Case

0 0.005 0.01 0.015 0.02 0.025 0.03

BAS

0

0.2

0.4

0.6

0.8

1

A
llo

ca
tio

n 
to

 Il
liq

ui
d 

S
to

ck

Sell: Optimal
Buy: Optimal
Sell: Myopic
Buy: Myopic

(b) Constrained Case

Figure 4: Optimal vs. Myopic Trading Boundaries

This figure shows the optimal and myopic trading boundaries at initial time t = 0 in our model.
When generating the myopic trading boundaries, the investor ignores the future variations in the
BAS by incorrectly assuming κ = ν = 0. Panel (a) shows the results for the case without any
portfolio constraints and Panel (b) shows the results for the case with no-leverage and no-short-
sale constraints on both stocks. Other parameter values used in generating these results are reported
in Table 3.

to buy when the BAS is large, as a low/high level of the BAS and liquidity premium are

less persistent. To verify this intuition, Figure 5(a) plots the optimal trading boundaries for

three values of mean reversion speed. We find that when the BAS is well below (or above)

the mean value, the optimal buy boundary moves north (or south) as the mean reversion

speed increases, indicating a higher (or lower) propensity to buy stock.

3.3 Losses from Adopting Suboptimal Trading Strategies

Next, we demonstrate the economic importance of adopting the optimal trading strategy by

calculating the investor’s utility losses when following suboptimal trading strategies.

For a given strategy Π, the investor’s utility loss from adopting Π is defined as the solution

∆Π to equation

V (1−∆Π, 0, θ0, 0) = V Π(1, 0, θ0, 0), (22)

where V Π(x, y, θ, t) is the indirect utility function associated with strategy Π. In other words,

∆Π is the certainty equivalent wealth loss (CEWL) as a fraction of the investor’s initial level
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Figure 5: Mean Reversion Speed and Optimal Trading Boundaries

This figure shows the optimal trading boundaries in our model, at initial time t = 0, for three
values of the mean reversion speed of the BAS (i.e., κ). Panel (a) shows the results for the case
without any portfolio constraints and Panel (b) shows the results for the case with no-leverage
and no-short-sale constraints on both stocks. Other parameter values used in generating these
boundaries are reported in Table 3.

of wealth from adopting strategy Π.

3.3.1 Loss from Adopting the Myopic Strategy

We first examine the investor’s loss from adopting the myopic trading strategy instead of the

optimal one. When adopting the myopic trading strategy, although the investor manages

to dynamically time the liquidity premium, they do not optimally control the turnover.26

Consequently, the investor is likely to incur high transaction costs and suffer a utility loss.

Figure 6 plots the investor’s average trading costs and CEWL ∆1 against BAS volatility

(i.e., ν). We find that adopting the myopic strategy leads to a significant utility loss for

the investor. In the base case, ∆1 is as high as 12.2% (or 3.3%) of the investor’s initial

wealth in the Unconstrained Case (or Constrained Case). Moreover, ∆1 increases with

an increase in BAS volatility because a higher BAS volatility implies greater variability in

the liquidity premium, which implies the importance of optimally trading off between the

26The myopic trading boundaries are shown in Figure 4, which suggests that the no-trade region implied
by the myopic trading strategy is much narrower than that implied by the optimal strategy.
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liquidity premium and transaction costs.

A distinct feature of our portfolio choice problem is that there is a strong interaction

between return predictability and trading costs. We argue that this interaction drives the

large utility loss from following the myopic strategy. For this purpose, we calculate the

investor’s CEWL from adopting the myopic strategy in a model with the same degree of

return predictability but without transaction costs, and we denote this CEWL as δ1.27 Figure

7 shows the CEWL ratio ∆1/δ1. The CEWL in our model is usually more than 2–3 times

greater than that in the model without trading costs. This suggests that adopting the

optimal trading strategy is especially important in the liquidity premium-timing problem.28

Comparative Statics In Table 5, we report the comparative statics results for the utility

loss from adopting the myopic trading strategy.

First, the reported results suggest that for a large range of parameter values, the investor

incurs a substantial loss from adopting the myopic trading strategy. Moreover, we observe

some interesting patterns in Table 5. For example, the CEWL decreases with an increase

in the illiquid stock’s unconditional expected return µI but increases with an increase in

the liquid stock’s expected return µL. As the illiquid stock’s unconditional expected return

decreases relative to the liquid stock’s expected return, increased trading in the illiquid stock

is driven by the changes in its liquidity premium. Consequently, the CEWL from not tim-

ing the liquidity premium optimally increases. As the investor’s risk aversion coefficient or

risk-free rate decreases, the CEWL increases because the investor allocates more wealth to

the illiquid stock. The CEWL also increases as the investor’s investment horizon increases

because a longer horizon implies more opportunities to actively time the liquidity premi-

um, which increases the importance of optimal trading. Last, the CEWL decreases with a

decrease in the mean reversion speed of the BAS because a faster mean reversion implies

shorter investment periods with a high liquidity premium, and consequently, the value of

27In such a model, the stock price dynamics are the same as those in our baseline model but the investor
does not pay costs on trading.

28In addition, we examine the utility loss from adopting the myopic trading strategy in two alternative
models: the SBAS-DJL model where there are stochastic trading costs but no return predictability and a
model with time-varying expected returns but a constant BAS. We find that the CEWLs in these two models
are also smaller than those in our model.
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(d) CEWL: Constrained Case

Figure 6: Trading Costs and CEWL from Adopting the Myopic Strategy

This figure shows the transaction costs incurred by the investor when adopting the optimal trading
strategy or the myopic trading strategy (subfigures on the left) and the CEWL from adopting the
myopic trading strategy (subfigures on the right). Panels (a) and (b) show the results for the case
without any portfolio constraints, and Panels (c) and (d) show the results for the case with no-
leverage and no-short-sale constraints on both stocks. Other parameter values used in generating
these results are reported in Table 3.
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Figure 7: Ratio of CEWLs with/without Trading Costs

This figure shows the ratio of the investor’s CEWL from adopting the myopic trading strategy with
and without transaction costs. When generating the results without trading costs, we assume that
the BAS of the illiquid stock (i.e., θt) continues to predict the future stock returns, but the investor
does not need to exceed the spread to purchase shares (i.e., the transaction costs are waived). Other
parameter values used in generating these results are reported in Table 3.

Table 5: CEWL from Adopting the Myopic Strategy: Comparative Statics

This table reports the investor’s average trading costs and CEWL from adopting the myopic trading
strategy for various sets of parameter values. The parameter values in the base case are reported
in Table 3.

Unconstrained Case Constrained Case

TC (Optimal) TC (Myopic) CEWL TC (Optimal) TC (Myopic) CEWL

Base case 0.043 0.116 0.122 0.015 0.031 0.033
γ = 6 0.089 0.222 0.193 0.019 0.048 0.051
T = 10 0.107 0.338 0.251 0.027 0.075 0.076
r = 0.005 0.044 0.117 0.125 0.016 0.033 0.035
r = 0.02 0.042 0.114 0.120 0.015 0.030 0.031
µL − 1% 0.048 0.121 0.115 0.015 0.029 0.029
µL + 1% 0.039 0.115 0.131 0.016 0.036 0.040
µI − 1% 0.039 0.111 0.127 0.015 0.034 0.037
µI + 1% 0.048 0.123 0.118 0.016 0.030 0.031
λ× 0.8 0.025 0.080 0.095 0.012 0.029 0.029
λ× 0.6 0.011 0.050 0.069 0.009 0.026 0.032
κ× 0.8 0.051 0.118 0.124 0.017 0.032 0.037
κ× 1.2 0.039 0.115 0.122 0.014 0.031 0.031
η × 0.8 0.027 0.080 0.099 0.012 0.028 0.032
η × 1.2 0.072 0.169 0.147 0.020 0.037 0.040
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optimal timing decreases.

3.3.2 Loss from Ignoring the Predictive Power of the BAS

Studies on portfolio choice with the BAS do not consider the predictive power of the BAS

on future stock returns. In our model, if the investor erroneously assumes that the illiquid

stock’s expected return is constant (e.g., its long-term mean value µI + λη), then their

portfolio choice strategy will not respond to actual changes in the illiquid stock’s expected

return, which will cause a utility loss.

Figure 8 shows the investor’s annual CEWL from erroneously assuming a constant ex-

pected return of µI + λη for the illiquid stock. The resultant utility loss is also significant,

especially when the investor has a long investment horizon and loose portfolio constraints.

For example, with an investment horizon of 10 years, an unconstrained investor would incur

an annual CEWL of 0.96% if they ignore the return predictability derived from the BAS of

the illiquid stock; if the investor were subject to strict no-leverage and no-short-sale con-

straints, then the annual CEWL would decrease to 0.45% because of less investment in the

illiquid stock. These utility loss calculations clearly demonstrate that ignoring the return

predictability derived from the BAS of the illiquid stock is costly.

3.3.3 Simulation Using Market Returns

We examine the performance of three strategies to further demonstrate the value of adopting

the optimal strategy: the optimal strategy, the myopic strategy, and the strategy without

the liquidity premium timing, using the sample data constructed in Section 2.1 and Section

3.1. The investment horizon consistent with our sample period is 20 years. Because the

BAS data are constructed with a monthly frequency, we let the investor make the trading

decisions on a monthly basis.29

Figure 9 shows the investor’s wealth accumulation processes with an initial unit wealth

level. Panel (a) ((b)) shows the results for the Unconstrained Case (Constrained Case). We

29As in our numerical analysis, we assume a risk aversion coefficient of 10 when generating the trading
strategies. We also consider other values of a risk aversion coefficient, and the results are qualitatively similar
to what we report here.

27



1 2 3 4 5 6 7 8 9 10

Investment Horizon (Years)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
nn

ua
l C

E
W

L 
(%

)

Unconstrained Case
Constrained Case

Figure 8: Annual CEWL from Ignoring the Predictive Power of the BAS

This figure shows the investor’s annual CEWL from ignoring the predictive power of the BAS of
the illiquid stock. The parameter values used in generating these results are reported in Table 3.
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Figure 9: Wealth Process

This figure shows the investor’s wealth accumulation process generated by adopting the optimal
strategy, myopic strategy, or strategy without the liquidity premium timing. Panel (a) shows the
results for the case without any portfolio constraints, and Panel (b) shows the results for the case
with no-leverage and no-short-sale constraints on both stocks. The investor’s initial wealth level is
normalized to 1. The parameter values used in generating trading strategies are reported in Table
3.
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Table 6: Empirical Performance Measures

This table reports the performance measures obtained by implementing the optimal trading s-
trategy, myopic trading strategy, or the no-liquidity premium-timing strategy. Panel A reports
the results for the case without any portfolio constraints, and Panel B reports the results for the
case with no-leverage and no-short-sale constraints on both stocks. The parameter values used in
generating trading strategies are reported in Table 3.

Panel A: Unconstrained Case
Optimal Strategy Myopic Strategy No LP Timing

Present Value of Transaction Costs 0.976 2.336 0.030
Average Monthly Return (%) 1.70 1.33 1.07
Volatility of Monthly Returns (%) 5.22 4.75 3.27
Sharpe Ratio (%) 30.71 25.82 29.71

Panel B: Constrained Case
Optimal Strategy Myopic Strategy No LP Timing

Present Value of Transaction Costs 0.163 0.214 0.019
Average Monthly Return (%) 1.30 0.99 0.93
Volatility of Monthly Returns (%) 4.13 3.49 2.87
Sharpe Ratio (%) 29.13 25.62 28.80

find that adopting the optimal trading strategy generates higher wealth levels than the other

two trading strategies in both cases, which indicates the profitability of timing liquidity in

practice.

Table 6 reports the performance measures obtained from this exercise, including the

present value of transaction costs, average monthly portfolio returns, standard deviation of

monthly returns, and Sharpe ratio. These results show that the investor incurs excessive

transaction costs from adopting the myopic strategy, which lower the investment returns

and Sharpe ratio, and that ignoring the liquidity premium timing makes the investor trade

too conservatively, which also lowers the investment returns and Sharpe ratio.

We also examine the economic value of timing the liquidity premium under different

market conditions. We consider the following five subperiods: January 2002–December 2002

(when the dot-com bubble burst), January 2003–December 2007, January 2008–December

2009 (the global financial crisis), January 2010–December 2019, and January 2020–December

2020 (the COVID-19 pandemic) to do so. The average BAS in the five subperiods are 3.03%,
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Table 7: Performance Measures: Subperiod Analysis

This table reports the performance measures in different subperiods, obtained by implementing
the optimal timing strategy or the no-timing strategy. Panel A reports the results for the case
without any portfolio constraints, and Panel B reports the results for the case with no-leverage and
no-short-sale constraints on both stocks. Row i reports the results obtained for the ith subperiod
for i = 1, ...5. The parameter values used in generating trading strategies are reported in Table 3.

Panel A: Unconstrained Case Panel B: Constrained Case

Optimal Timing No Timing Optimal Timing No Timing

1
Avrg. Monthly Rtn (%) 2.18 1.12 0.40 0.24

Sharpe Ratio (%) 32.41 34.17 5.45 4.59

2
Avrg. Monthly Rtn (%) 2.87 1.87 2.10 1.43

Sharpe Ratio (%) 56.18 54.63 54.58 53.10

3
Avrg. Monthly Rtn (%) 1.13 0.35 0.83 0.26

Sharpe Ratio (%) 11.81 6.14 9.93 3.79

4
Avrg. Monthly Rtn (%) 0.87 0.61 0.89 0.72

Sharpe Ratio (%) 26.36 22.68 29.02 28.72

5
Avrg. Monthly Rtn (%) 3.95 2.64 2.64 1.81

Sharpe Ratio (%) 41.15 41.59 33.59 28.44

1.63%, 2.67%, 1.43%, and 1.94%, respectively.30

We compare the performance of the optimal timing strategy and the no-timing strategy

for these subperiods and report the results in Table 7. We find that the optimal timing

strategy largely outperforms the no-timing strategy during periods of market turmoil, such

as the 2008-2009 global financial crisis. Notably, in the Constrained Case, the performance

advantage of the optimal timing strategy is almost entirely concentrated in periods with high

BAS. In the Unconstrained Case, the optimal timing strategy delivers higher returns but

lower Sharpe ratios in the first and fifth subperiods. This could be due to a high leverage

ratio implied by the strategy in the absence of portfolio constraints.

30The differences in these average BAS is statistically significant. For example, the difference between the
average BAS in the second period and that in the first period has a t-statistic of -8.58.
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Figure 10: BAS Volatility and Investor’s CER

This figure shows the investor’s CER for various values of the BAS volatility (i.e., ν). Panel (a)
shows the results for our model, and Panel (b) shows the results for the SBAS-DJL model. Other
parameter values used in generating these results are reported in Table 3.

3.4 Is Higher Liquidity Risk a Curse?

In our model, the investor has an option to dynamically time both the liquidity and the

liquidity premium. Holding everything else constant, if the BAS of the illiquid stock be-

comes more volatile, the value of such an option should be higher as the investor has more

opportunities to exercise their timing. This intuition suggests that a higher liquidity risk, in

the form of greater uncertainty in the future BAS, may make the investor better off.

To verify the above intuition, we examine how the investor’s utility changes with respect

to the volatility of the BAS (i.e., ν). In Panel (a) of Figure 10, we plot the investor’s CER

against ν. We find that the investor’s CER increases with an increase in ν, which indicates

that greater uncertainty in the BAS can indeed benefit the investor.31

Note that our model allows the investor to perform both liquidity timing (i.e., trade

more when the spread is narrow) and liquidity premium timing (i.e., rebalance positions in

response to changes in the liquidity premium). To distinguish between the effect of each

channel, in Panel (b) of Figure 10, we plot the investor’s CER against ν in the SBAS-DJL

31We emphasize that timing the optimal liquidity premium is important for the investor to benefit from
greater variability in the BAS. If the investor trades sub-optimally (e.g., by adopting the myopic strategy),
then their CER will not increase with an increase in ν.
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Table 8: BAS Volatility and CER: Comparative Statics

This table reports the investor’s annual CER for various sets of parameter values. The parameter
values in the base case are reported in Table 3.

Unconstrained Case Constrained Case

BAS volatility ν 0.02 0.06 0.10 0.02 0.06 0.10

Base case 0.075 0.085 0.090 0.061 0.068 0.075
γ = 6 0.116 0.133 0.141 0.094 0.103 0.109
T = 10 0.077 0.088 0.092 0.062 0.070 0.077
r = 0.005 0.071 0.082 0.088 0.058 0.066 0.073
r = 0.02 0.079 0.088 0.093 0.065 0.071 0.077
µL − 1% 0.082 0.092 0.096 0.061 0.068 0.075
µL + 1% 0.069 0.079 0.086 0.061 0.068 0.075
µI − 1% 0.064 0.074 0.080 0.055 0.062 0.068
µI + 1% 0.087 0.098 0.102 0.067 0.075 0.082
λ× 0.8 0.050 0.056 0.062 0.047 0.051 0.055
λ× 0.6 0.036 0.038 0.041 0.036 0.038 0.040
κ× 0.8 0.076 0.087 0.091 0.062 0.070 0.077
κ× 1.2 0.074 0.083 0.089 0.061 0.067 0.073
η × 0.8 0.051 0.058 0.065 0.047 0.052 0.058
η × 1.2 0.108 0.120 0.122 0.077 0.086 0.094

model, in which the investor can only perform liquidity timing because the expected return

of the illiquid stock is constant. The results suggest that the CER tends to decrease slightly

in ν in the SBAS-DJL model. Hence, we conclude that in our model, the utility gain from

greater uncertainty in the BAS is solely attributed to more opportunities to time the liquidity

premium.

In Table 8, we report the investor’s annual CER for various sets of parameter values.

The result that a greater BAS volatility makes the investor better off holds for a large range

of parameter values.

3.5 Optimal Liquidity Premium Timing under Relative Perfor-

mance Concern

In practice, many equity fund managers use portfolios of liquid assets (e.g., S&P 500) as

benchmarks for performance evaluation. The reputation, status, and compensation of fund

managers are closely linked to the performance of their managed portfolios against the bench-
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mark (see, e.g., Ma et al. (2019)). For such fund managers, adopting the liquidity premium

timing strategy may drive their portfolios away from the benchmarks and can be inher-

ently risky. Therefore, the presence of relative performance concerns can affect managers’

incentives to time the liquidity premium. Therefore, we next examine the optimal liquidity

premium timing under the concerns of relative performance.

3.5.1 Modeling Relative Performance Concerns

We extend our baseline model in a straightforward way to incorporate relative performance

concerns. The investment opportunity set is the same as that in the baseline model, and we

assume that a fund manager uses the liquid stock as the performance benchmark. We capture

the manager’s relative performance concerns by assuming the manager has the following

objective function.

maxE

[
u

(
WT

(
WT/W0

SLT/SL0

)p)]
, (23)

where p ≥ 0 denotes the importance of relative performance: the higher the value of p,

the more important the relative performance is to the fund manager.32 As only the returns

matter for the relative performance term (i.e., WT /W0

SLT /SL0
) in (23), without loss of generality,

we can set W0 = SL0 such that the objective function becomes as follows

maxE

[
u

(
WT

(
WT

SLT

)p)]
. (24)

To save space, we provide the details of this model in the Appendix C. This model is

solved numerically with the default parameter values reported in Table 3.

32The interpretation of (23) is straightforward—when the manager’s portfolio outperforms (or underper-
forms) the benchmark, the manager can obtain extra utility (or disutility) in addition to that derived from
the asset under their management. Note that the specification of relative performance concerns in (23)
does not create convexity in the manager’s optimization problem, which tends to penalize deviations from
the benchmark. In contrast, if relative performance concerns are specified in a way that creates convexity
(e.g., Basak et al. (2007)), then deviations from the liquid benchmark will be preferred and our results are
expected to be stronger.
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Figure 11: Optimal Trading Boundaries under Relative Performance Concerns

This figure shows the fund manager’s optimal trading boundaries for two values of the relative
performance concern parameter (i.e., p). Other parameter values used in generating these results
are reported in Table 3.

3.5.2 Analysis of Results

Next, we conduct a numerical analysis of the solution to the fund manager’s problem. In

practice, there are borrowing and short-selling constraints in the mutual fund industry (see,

e.g., Almazan et al. (2004)). Accordingly, we assume that the fund manager is restricted

from borrowing or short-selling when generating these results.

Optimal Trading Strategy Figure 11 shows the fund manager’s optimal trading bound-

aries for two values of p. The relative performance concerns indeed have an impact on the

optimal trading boundaries: as the value of p increases, the level of both the optimal buy

and sell boundaries decreases, which implies that the optimal exposure to the illiquid stock

decreases with a decrease in the degree of relative performance concerns. This pattern reveals

the manager’s stronger aversion to deviations from the benchmark stock in their managed

portfolio.

Costs of Following Suboptimal Strategies Next, we calculate the fund manager’s

utility loss from adopting the myopic trading strategy or the strategy without liquidity
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premium timing to understand the importance of adopting the optimal trading strategy in

the presence of relative performance concerns. Similar to the analysis in Section 3.3, we

measure utility costs as a fraction of the fund’s initial assets under management (AUM).

Figure 12 shows the utility losses against the value of p. We find several interesting

observations from it. First, in the presence of relative performance concerns, the costs of

suboptimal trading can continue to be economically significant. For example, when p = 1.5,

the cost of erroneously assuming constant expected returns on the illiquid stock amounts to

approximately 1.9% of the fund’s initial AUM, and the cost increases to 6.1% if the fund

manager follows the myopic trading strategy. Second, the losses appear to be hump-shaped

functions of p. The intuition behind this pattern is as follows. A higher degree of relative

performance concerns have two competing effects: it can cause greater marginal utility, which

increases the costliness of suboptimal trading, and it drives the manager’s portfolio (both

optimal and suboptimal) toward the benchmark liquid stock, which decreases the costliness

of suboptimal trading. These results suggest that when the value of p is small, the first effect

dominates and makes the utility costs increase with an increase in p, and when the value of

p is large, the second effect dominates and makes the utility costs decrease with a decrease

in p instead.

Overall, the above results indicate that a moderate degree of relative performance con-

cerns increase the importance of timing the optimal liquidity premium.

BAS Volatility and Investor’s Utility In Section 3.4, we have shown that with optimal

liquidity premium timing, a greater variability in the BAS can make the investor better off.

Here, we examine whether this result holds in the presence of relative performance concerns.

We first consider the fund manager’s utility. Figure 13 plots the fund manager’s scaled

value function against the BAS volatility (i.e., ν) for three values of p.33 We find that the

scaled value function is increasing with an increase in the volatility of the BAS when relative

performance concerns are present.

Next, we calculate the utility derived by a fund investor who exhibits no relative perfor-

33This scaled value function is defined as the function φ in (51) in the Appendix C.
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Figure 12: Loss from Suboptimal Trading under Relative Performance Concerns

This figure shows the fund manager’s utility loss from adopting the strategy without liquidity
premium timing (the no-timing strategy) or the myopic strategy against the value of the relative
performance concern parameter (i.e., p). The no-timing strategy is obtained by assuming a constant
expected return on the illiquid stock and the myopic strategy is obtained by assuming no future
variation in the BAS. Other parameter values used in generating these results are reported in Table
3.

36



0.02 0.04 0.06 0.08 0.1
0.38

0.4

0.42

0.44

0.46

0.48

0.5

S
ca

le
d 

V
al

ue
 F

un
ct

io
n

p=0.5
p=1
p=2

Figure 13: BAS Volatility and Fund Manager’s Scaled Value Function

This figure shows the fund manager’s scaled value function against the volatility of the BAS (i.e.,
ν) for three values of the relative performance concern parameter (i.e., p). Other parameter values
used in generating these results are reported in Table 3.

mance concern and delegates investment management to the fund manager.34 We assume

that the fund investor has a relative risk aversion coefficient of γI , which may differ from the

manager’s risk aversion coefficient γ. Note that we calculate the fund investor’s expected

utility using the fund manager’s optimal trading strategy as input.

Figure 14 plots the fund investor’s annualized CER against the volatility of the BAS for

various values of p and γI . In all cases reported in this figure, the fund investor’s CER is

increasing with an increase in the value of ν. Hence, a greater variability in the BAS makes

the fund investor better off as well.

4 Conclusion

We study an optimal portfolio choice problem in which the BAS of illiquid stock evolves

randomly and predicts its future returns. Compared with the traditional portfolio choice

models with transaction costs, there is a strong interaction between return predictability

and trading costs in our model, as both are derived from the BAS. We show that this

34We explain the calculation of the fund investor’s utility in the Appendix C.
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Figure 14: BAS Volatility and Fund Investor’s CER

This figure shows the fund investor’s annual CER against the volatility of the BAS (i.e., ν) for
different values of the relative performance concern parameter (i.e., p) and the fund investor’s risk
aversion coefficient (i.e., γI). Other parameter values used in generating these results are reported
in Table 3.
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interaction leads to prominent features in the optimal trading strategy. First, the optimal

trading strategy involves a combination of liquidity premium timing and turnover control.

The investor in our model makes an effort to reduce turnover and trading costs by choosing

a much wider no-trade region. Second, when the spot spread deviates sufficiently from its

mean value, it is optimal to adopt an aiming-in-front-of-the-target trading strategy that

allows the investor to speculate on future changes in the spread.

We also argue that such interaction makes it particularly important to adopt the optimal

trading strategy because the investor incurs a significant utility loss from adopting a myopic

trading strategy. Ignoring the predictive power of spread is also quite costly. We further

demonstrate that a higher liquidity risk, in the form of greater uncertainty in future changes

in the spread, can make the investor better off if they optimally time the liquidity premium.

We further study an optimal liquidity premium timing problem of a fund manager who

is averse to poor performance against a liquid benchmark. We show that although such

relative performance concerns reduce the manager’s incentive to earn the liquidity premium,

they can still generate economically significant gains by timing the optimal liquidity premi-

um. Moreover, when the fund manager times the optimal liquidity premium, the greater

variability in the BAS makes both the fund manager and fund investor better off.
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Appendix

The content of this Appendix is as follows. In Appendix A, we present the complete form of

the HJB equation in the baseline model after dimension reduction and explain how we solve

it numerically. In Appendix B, we present the detailed procedure of the quasi-maximum

likelihood estimation (QMLE) method used for estimating the model parameter values. In

Appendix C, we present the details of the model studied in Section 3.5.

A Details of Solving the Baseline Model

First, it is not difficult to derive that the differential operator Lξ1 in (17) is

Lξ1φ = D +Dπφπ +Dθφθ +Dππ(φππ + (1− γ)φ2
π) +Dθθ(φθθ + (1− γ)φ2

θ)

+Dπθ(φπθ + (1− γ)φπφθ), (25)

where the coefficients are as follows:

D = r(1− π) + ξ(µL − r) + (µI + λθ)π − 1

2
γξ2σ2

L −
1

2
γσ2

Iπ
2 − γρ12ξσLσIπ; (26)

Dπ = (µI + λθ − r)π(1− π)− πξ(µL − r)− π(1− π)γσ2
Iπ + πγξ2σ2

L

−πγρ12ξσLσI(1− 2π); (27)

Dθ = κ(η − θ) + ρ23σIν
√
θ(1− γ)π + ρ13ξσLν

√
θ(1− γ); (28)

Dππ =
1

2
σ2
Iπ

2(1− π)2 +
1

2
ξ2σ2

Lπ
2 − ρ12ξσLσIπ

2(1− π); (29)

Dθθ =
1

2
ν2θ; (30)

Dπθ = πν
√
θ (ρ23σI(1− π)− ρ13ξσL) . (31)

In (54), the terms involving ξ can be arranged as follows:

h(ξ) = Dξξ +
1

2
Dξξξ

2, (32)
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where

Dξ = (µL − r)− γρ12σLσIπ + π[−(µL − r)− γρ12σLσI(1− 2π)]φπ

+ρ13σLν
√
θ(1− γ)φθ + π2(1− π)(−ρ12σLσI)(φππ + (1− γ)φ2

π)

+πν
√
θ(−ρ13σL)(φπθ + (1− γ)φπφθ)

and

Dξξ = −γσ2
L + 2πγσ2

Lφπ + π2σ2
L(φππ + (1− γ)φ2

π).

Hence, the optimal allocation to the liquid stock in the Unconstrained Case is as follows:

ξ∗t = − Dξ

Dξξ

(33)

and that in the Constrained Case is as follows:

ξ∗t =


1− πt, if − Dξ

Dξξ
≥ 1− πt,

− Dξ
Dξξ

, if 0 < − Dξ
Dξξ

< 1− πt,

0, if − Dξ
Dξξ
≤ 0,

(34)

where the partial derivatives involved in Dξ and Dξξ are evaluated at (πt, θt, t).

Then, similar to Dai and Zhong (2010), we consider the following penalty approximation

of equation (17)–(18):

sup
ξ
Lξ1φ+ φt +K max{0, −φπ}+K max{0, −θ + (1 + θπ)φπ} = 0, (35)

φ(π, θ, T ) = ln(1− θπ−), (36)

where K � 0 is a large penalty parameter. Equation (35) and boundary condition (36) are

solved together using the policy iteration algorithm combined with a finite-difference scheme.

The detailed procedures of the numerical implementation are omitted here but are available

from the authors upon request.
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B Procedure of the QMLE

We first rewrite equations (3), (4), and (5) in the following way to perform the QMLE

method:

d lnSLt = (µL −
1

2
σ2
L)dt+ σLdZ1t, (37)

d lnSIt = (µI + λθt −
1

2
σ2
I )dt+ σIdZ2t, (38)

dθt = κ(η − θt)dt+ ν
√
θtdZ3t. (39)

Next, given a series of time points t0 < t1 < ... < tN , we discretize the above system using

the following Euler scheme.

lnSL,ti+1
= lnSL,ti + (µL −

1

2
σ2
I )∆ti + σL

√
∆tin1i, (40)

lnSI,ti+1
= lnSI,ti + (µI + λθti −

1

2
σ2
I )∆ti + σI

√
∆tin2i, (41)

θti+1
= θti + κ(η − θti)∆ti + ν

√
θ+
ti

√
∆tin3i (42)

where ∆ti = ti+1 − ti and (n1i, n2i, n3i) are three standard normal random variables with

correlation coefficient matrix Λ defined by (6). Moreover, the sequences {n1i}, {n2i}, and

{n3i} are all serially independent.

Let xi = (lnSL,ti , lnSI,ti , θti) be the vector of state variables at time ti. Then, the

transition density from xi to xi+1 is |Jti |f(yi+1; 0,Λ), where

Jti =
1

σLσIν
√
θ+
ti (∆ti)

3/2
(43)

is the Jacobi determinant, f(x;µ,Σ) is the normal three-dimensional density function with

mean vector µ and covariance matrix Σ, and

yi+1 =


lnSL,ti+1

−lnSL,ti−(µL− 1
2
σ2
I )∆ti

σL
√

∆ti
lnSI,ti+1

−lnSI,ti−(µI+λθti−
1
2
σ2
I )∆ti

σI
√

∆ti
θti+1−θti−κ(η−θti )∆ti

ν
√
θ+ti

√
∆ti

 . (44)
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We ignore the distribution of the initial BAS (i.e., θ0), as it is asymptotically irrelevant.

Then, the log likelihood function of the entire data sample can be expressed as follows:

L =
N−1∑
i=0

ln |Jti |+ ln f(yi+1; 0,Λ). (45)

We then numerically search for the set of model parameters that maximize L.

C Details of the Model in Section 3.5

Solving the Manager’s Problem In the presence of relative performance concerns, with

a slight abuse of notation, we denote the fund manager’s value function as J(x, y, θ, S, t).

Then, it is governed by the following HJB equation.

max
{

sup
ω
Lω0J + Jt, S0J, B0J} = 0, (46)

J(x, y, θ, S, T ) =
1

1− γ
((x+ y+ − (1 + θ)y−)1+pS−p)1−γ, (47)

on an appropriate solution domain, where the differential operators in (46) are given by

Lω0J = (rx+ ω(µL − r))Jx + (µI + λθ)yJy + κ(η − θ)Jθ + µLSJS +
1

2
ω2σ2

LJxx +
1

2
σ2
Iy

2Jyy

+
1

2
ν2θJθθ +

1

2
σ2
LS

2JSS + ρ12ωσLσIyJxy + ρ13ωσLν
√
θJxθ + ωσ2

LSJxS

+ρ23σIyν
√
θJyθ + ρ12σLσIySJyS + ρ13νσL

√
θSJθS, (48)

S0J = Jx − Jy, (49)

B0J = Jy − (1 + θ)Jx. (50)

By exploiting the homogeneity of the problem, we can use the following transformation

to simplify the problem.

J(x, y, θ, S, t) =
1

1− γ
(x+ y)(1+p)(1−γ)S−p(1−γ)e(1−γ)φ(π,θ,t), (51)

where π = y
x+y

and φ(π, θ, t) is the scaled value function of the fund manager. Let ξ = ω
x+y

.
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Then, φ(π, θ, t) solves

max
{

sup
ξ
Lξ1(p, γ)φ+ φt, −φπ, −θ(1 + p) + (1 + πθ)φπ} = 0, (52)

φ(π, θ, T ) = (1 + p) ln(1− θπ−), (53)

where the differential operator Lξ1(p, γ) in (52) is

Lξ1(p, γ)φ = D(p, γ) +Dπ(p, γ)φπ +Dθ(p, γ)φθ +Dππ(p, γ)(φππ + (1− γ)φ2
π)

+Dθθ(p, γ)(φθθ + (1− γ)φ2
θ) +Dπθ(p, γ)(φπθ + (1− γ)φπφθ), (54)

with the following coefficients:

D(p, γ) = [r(1− π) + ξ(µL − r)](1 + p) + (µI + λθ)π(1 + p)− pµL

+
1

2
ξ2σ2

L(1 + p)((1 + p)(1− γ)− 1) +
1

2
π2σ2

I (1 + p)((1 + p)(1− γ)− 1)

+
1

2
σ2
Lp(p(1− γ) + 1) + ρ12ξσLσIπ(1 + p)((1 + p)(1− γ)− 1)

−ξσ2
Lp(1− γ)(1 + p)− ρ12σLσIπ(1− γ)p(1 + p);

Dπ(p, γ) = −[r(1− π) + ξ(µL − r)]π + (µI + λθ)π(1− π)− ξ2σ2
Lπ((1 + p)(1− γ)− 1)

+π2σ2
I (1− π)((1 + p)(1− γ)− 1) + ρ12ξσLσIπ(1− 2π)((1 + p)(1− γ)− 1)

+ξσ2
Lp(1− γ)π − ρ12σLσIπp(1− γ)(1− π);

Dθ(p, γ) = κ(η − θ) + ρ13ξσLν
√
θ(1 + p)(1− γ) + ρ23σIπν

√
θ(1 + p)(1− γ)

−ρ13νσL
√
θp(1− γ);

Dππ(p, γ) =
1

2
ξ2σ2

Lπ
2 +

1

2
σ2
Iπ

2(1− π)2 − ρ12ξσLσIπ
2(1− π);

Dθθ(p, γ) =
1

2
ν2θ;

Dπθ(p, γ) = −ρ13ξσLν
√
θπ + ρ23σIπν

√
θ(1− π).

The model is solved in a similar manner as the baseline model.

Solving for the Fund Investor’s Value Function Next, we explain how we obtain the

fund investor’s value function, given the manager’s optimal trading strategies. First, we
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define the following regions:

BR ≡ {(π, θ, t) : −θ(1 + p) + (1 + θπ)φπ = 0}; (55)

SR ≡ {(π, θ, t) : −φπ = 0}; (56)

and

NTR ≡ {(π, θ, t) : 0 < φπ <
θ(1 + p)

1 + θπ
}. (57)

We also define

ξ∗(π, θ, t) = arg max
ξ
Lξ1(p, γ)φ. (58)

Then, we denote the investor’s value function as J i(x, y, θ, t), which also takes the fol-

lowing functional form

J i(x, y, θ, t) =
1

1− γI
(x+ y)1−γIe(1−γI)φi(π,θ,t). (59)

It can be verified that the function φi(π, θ, t) satisfies the following PDE:

Lξ
∗(π,θ,t)

1 (0, γI)φ
i + φit = 0, if (π, θ, t) ∈ NTR, (60)

−φiπ = 0, if (π, θ, t) ∈ SR, (61)

−θ + (1 + πθ)φiπ = 0, if (π, θ, t) ∈ BR (62)

with the terminal condition:

φi(π, θ, T ) = ln(1− θπ−). (63)

After we obtain the scaled value function φi(π, θ, t), the investor’s annualized certainty e-

quivalent rate of return, measured at the initial time t = 0, is simply φi(π0, θ0, 0)/T .
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